DETAILED FEASIBILITY REPORT

(PROJECT FEASIBILITY REPORT)

ON

STARCH FROM MAIZE

INDENTIFICATION & EVALUATION DIVISION FOR HI-TECH PROJECTS

ENGINEERS INDIA RESEARCH INSTITUTE

EIRI CONSULTANTS & ENGINEERS

* REGD. OFFICE *
4449, NAI SARAK, MAIN ROAD,
NEAR CHANDNI CHOWK,
DELHI - 11 00 06. (INDIA)
(BETWEEN MARWARI KATRA AND ROSHAN PURA),
PH : 91-11-23918117, 23916431, 45120361, 64727385, 23947058
E-Mail : eiriprojects@gmail.com, eiribooks@yahoo.com
Web: www.eirindia.org, www.eiribooksandprojectreports.com

CODE : EIRI/DFR/0411
J.C. : 7991
CAUTION

This project report has been prepared on the basis of information available with M/S. ENGINEERS INDIA RESEARCH INSTITUTE. The intention here is to provide preliminary information to the prospective entrepreneur. Prior to making a firm decision for investment in the project the entrepreneur must verify the various feasibility aspects together along with the addresses for the procurement of plant & machinery and raw materials independently. The information supplied in this report is obtained from the reliable sources but it is not guaranteed and the money once paid will not be refunded back in any case. Claims for incomprehensiveness of the project report will not be entertained and no legal action in this regard would be entertained in any case (Subject to Delhi Jurisdiction only). Any matter relating to our standard points covered in the report may be modified with in 5 days time only from the date of purchase.

ENGINEERS INDIA RESEARCH INSTITUTE, 4449 NAI SARAK, DELHI-110006.
STARCH FROM MAIZE

[EIRI/DFR/0411] (J.C.:7991)

CONTENTS

APPENDIX - A

1. COST OF PLANT ECONOMICS A 1
2. LAND & BUILDING A 2
3. PLANT AND MACHINERY A 3
4. FIXED CAPITAL INVESTMENT A 5
5. RAW MATERIAL A 6
6. SALARY AND WAGES A 7
7. UTILITIES AND OVERHEADS A 8
8. TOTAL WORKING CAPITAL A 9
9. COST OF PRODUCTION A11
10. PROFITABILITY ANALYSIS A12
11. BREAK EVEN POINT A13
12. RESOURCES OF FINANCE A14
1.0 Starches

Starch is a group of polysaccharides, composed of glucopyranose units joined together by glucosidic linkages. It conforms to the molecular formula, \((C_6H_{10}O_5)_n\), where \(n\) varies from a few hundred to over one million. Starch is found as the reserve carbohydrate in various parts of plants and is enzymatically broken down to glucose to other carbohydrates according to the metabolic needs of the plants.

1.1 Natural Starches

Starch occurs naturally in the plants and its percentage varies with the plant and also in different parts of the same plant. Corn (maize), sorghum grain, wheat, rice, potato, tapioca, arrow root, and sago are among the important sources of natural starch. The grains of barley, rye, oat, and the millets are also employed in the production of starches.
1.2 Tapioca

The roots of tapioca plant (manihot utilissimax) farms one of the major sources of starch, ranking next to potato in the consumption by starch industry. Tapioca plant, also known as cassava and manioc, thrives in equatorial regions between the Topic of Capricorn. There are as many as seventy five varieties of cassava plant of which two varieties viz., bitter and sweet are widely cultivated; the bitter is usually grown for the purposes of the manufacture of starch, as it contains a higher content of starch. The starch content of the plant varies between 12 and 33 per cent. The ratio of the percentage of any lase to amyllopectin has been found to be 16:84. More than half of the total world area under the cultivation of cassava is confined to the African countries such as Gambia, Ghana, Kenya, Mauritius, Nigeria, Zamibia, Nyssaland, Sierra Leone and Zanzibar and the rest come from the tropical regions of other continents.

1.3 Cereal Starches

The cereal starches, such as maize, wheat, rice and sorghum, are recovered by several processes, of which the wet-milling is by far the most important. Other processes commercially employed in the manufacture of unmodified starches are that alkali, Martin and batter in the order of decreasing importance. Of the material methods earlier used for the production of starch and which have now become obsolete, mention may be made of the Hakka, Alsation and Fescas process. In all the above processes, Starh is recovered in five stages:

a) Softening or steeping of the grains, after thorough washing in water.

b) Tabling or centrifugation of the ground mass.

c) Dewatering and drying of the final products.

d) The recovery of important by products.
1.4 Raw Materials

The principal raw materials, used by the Indian Starch Industry are maize and tapioca.

1.4.1 Maize

Maize is grown in Uttar Pradesh, Bihar, Rajasthan, Punjab, Madhya Pradesh, Himachal Pradesh, Gujarat, Jammu and Kashmir, Andhra Pradesh, Mysore, and Haryana,. The total area under cultivation and the production of maize during 1970-71 were estimated at 5,838,700 hectares and 7,412,900 tonnes respectively.

1.4.6 Chemicals

The important chemicals used by the starch industry are hydrochloric acid, sulphuric acid, soda ash, sulphur and activated carbon and all these are manufactured in the country (chem. Ind. News, 1957, 1. 283; Agric. Situat. India, 1971-72, 26,376; ibid., 1970-71, 25,1273;
B.I.S. SPECIFICATION

IS : 1005-1976
Edible maize starch (corn flour)
(Second Revision).

IS : 1184-1977
Maize, starch, cotton textile industry
(Second revision)

IS : 4662-1977
Methods for sampling of starches products
(First revision)

For more information contact at:

Headquarters:
Manak Bhavan,
9, Bahadur Shah Zafar Mag,
New Delhi-110 002
Phone: 91 11 23238821, 23233375, 23239402
91 23238821, 23239399 (Fax)
sales@bis.org.in standards Institution
<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Sales Outlets Address</th>
<th>Telephone No/Fax/e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>Director (Sales)
Manak Bhawan,
9, Bahadur Shah Zafar Marg
New Delhi-110 002</td>
<td>91-11-23238821,23233375,23239402
91-23238821, 23239399(Fax)</td>
</tr>
<tr>
<td>02.</td>
<td>Western Regional Office
Manakalaya,
Plot No. E-9, MIDC,
Road No. 8,
Behind Telephone Exchange,
Andheri (East),
Mumbai-400 093</td>
<td>Phone 022-28329295
Fax 28374231
Email:saleswro@bis.org.in</td>
</tr>
<tr>
<td>03.</td>
<td>Eastern Regional Office
5, Chowringhee Approach
P.O. Princep Street,
Kolkata-700 012</td>
<td>033-232053243
91-33-23377459(Fax)
ero@bis.org.in</td>
</tr>
<tr>
<td>04.</td>
<td>Northern Regional Office
SCO 335-336, Sector 34-A
Chandigarh-160 022</td>
<td>91-0172 2665512
91-0172 2602025 (Fax)
910172-2609285,
2664750,2624136(PBX)
nro@bis.org.in</td>
</tr>
<tr>
<td>05.</td>
<td>Southern Regional Office
C.I.T. Campus, IV Cross Road
Chennai-600 013</td>
<td>91-044-22542315, 22541584,22541470
91-044-22541087 (Fax)
sro@bis.org.in</td>
</tr>
</tbody>
</table>

NOTE :- The use of the ISI Certification Mark is governed by the provisions of the Indian Standards Institution (Certification Marks) Act and the Rules and Regulations made thereunder. The ISI Mark on products covered by an Indian Standard conveys the assurance that they have been produced to comply with the requirements of that standard under a well-defined system of inspection, testing and quality control which is devised and supervised by ISI and operated by the producer. ISI marked products are also continuously checked by ISI for conformity to that standard as a further safeguard. Details of conditions under which a licence for the use of the ISI Certification Mark may be granted to manufacturers or processors, may be obtained from the Indian Standards Institution.
MARKET SURVEY

Starch Industry in India

Starch is an abundant carbohydrate distributed worldwide in plants. Starch has been a major ingredient in man's diet over the centuries. In addition it has become a major industrial raw material. Plant seeds, roots and tubers are all sources of industrial starch production. The commercial realities of the starch recovery process limit the industrial sources mainly to wheat, maize and tapioca. Indian starch industry mainly consumes maize as input raw material. Also some industries are tapioca based.

Maize is doing wonderful things in our everyday life. Maize is present in one form or other in

The Food we eat
The Milk we drink
The Chocolates/Biscuits we take
The Clothes we wear
The Paper we read
The Medicines we take

Maize (Corn) contains about 70% starch, other components being protein, fibers and fat. The basis of the maize milling process is the separation of the maize kernel into its different parts. Maize starch is produced by the wet milling process, which involves grinding of softened maize and separation of corn oil seeds (germs), gluten (proteins), fibers (husk) and finally pure starch.

Byproducts from Maize

The byproducts from maize based industries find various applications:

i. Maize (Corn) Steep Liquor: It contains amino acids, proteins and are used by antibiotics drugs manufacturers. Also it is a large source of biogas, which is being used as fuel for driers, boilers etc.

ii. Maize Gum: Corn Oil is produced by expelling oil from the germs. Corn Oil finds applications in food and other chemical industries. Maize oil cake obtained after expelling oil is used as cattle and poultry feeds.
iii. Maize Gluten: Maize Gluten contains high protein content and it is used as cattle and poultry feeds.

iv. Maize Husk: It contains starch, protein and fat as minor components and mainly consumed as cattle feed.

Concept of Texture

Starch has a multitude of food and industrial applications. Starch plays a leading role in determining the texture of many foods and texture is of vital concern to both the consumers and the manufacturers. Appearance, feel to the touch, softeners and finally mouth feel all contribute to the concept of texture.

Uses of Maize Starch

Maize starch forms viscous, relatively short and opaque paste with cereal flavor. Its paste sets to stiff gels. It is widely used for thickening sauces, gravies, puddings and pie fillings. Maize starch finds numerous uses in the baking industry for the production of cakes, cookies, in ice-cream preparations etc.

In paper industry a large quantity of starch is consumed as a surface-sizing agent, as a binder, as a paper coating agent etc. In textile industry, starch is used in sizing to strengthen the warpyarn, in finishing and changing the appearance of fabric after it is bleached, dyed or printed, in printing and increase the consistency of printing pastes. Also starch is used as a component in finishing agent to glaze and polish sizing thread.

Starch Derivatives

Starch when cooked forms high viscous gels and this property limits its applications. But by acid and other chemical treatments at varying temperatures the characteristics of the native starch is modified to suit various end users. Following products are made by the chemical / acid and heat treatments of starches.
White Dextrins
Yellow Dextrins
British Gums

These products are partly soluble in water and finds several applications in food industry as

Thickener in Sauces and Soups
Gel Former in Puddings
Suspension Stabilizer
Bodying agent in Baking

Modified Starches such as oxidised starch, pregelatinized starch and cationic starch find wide applications in paper industry, textile industry, Confectionary etc.

Starch Sweetners

Starch based sweeteners are other class of products manufactured in starch industries. A variety of sweeteners for very specific end users are produced by acid/enzyme hydrolysis of starch. Following starch sweeteners are available in the market: Malto dextrin, Liquid glucose, Dextrose monohydrate, High Maltose syrup, Liquid Sorbitol.

These starch based sweeteners find various end users, a few are mentioned below:

Maltodextrin : In syrup and powder form used in food, baby food and medical preparations as a non sweet, nutritive agent.

Liquid Glucose : Widely used in the confectionary bakery, jam, canning and leather industries.

Liquid Dextrose: In fermentation industries for the manufacture of dextrose monohydrates, fructose and Sorbitol syrups.

Dextrose Monohydrates: A crystalline free flowing product used in food and pharmaceutical industries for Glucose-D, Glucose-C manufacture etc.
High Maltose Syrup: As a malt replacement in brewing industry, in confectionary for Candy making.

Sorbitol Syrup: It is hydrogenated dextrose syrup not having any reducing sugars widely used by tooth paste, pharmaceuticals, cosmetics and tobacco industries.
ADDRESS OF MANUFACTURERS/SUPPLIERS OF STARCH

Anil Starch Products Ltd.
Anil Road, P.O.Box 10009
Ahmedabad - 380025
Ph.: 2123222
Fax: 2110731

Geeta Trading Company,
2105, Khari Baoli,
New Delhi - 110 006
Tel : 2513852

Ganga Bishan & Sons
142, Gadodia Market
Kari Baoli, Delhi - 110006
Ph.: 2943682

Md. Nasimuddin, I.A.S
Sagoserve, Salem - 636302
Ph.: 447673, 448046
Fax: 0427-445028

National Starch & Chemical Co.
10, Finderne Avenue
P.O.Box 6500
Bridgewater, New Jersey - 08807 90500
908 685 5000
Website : www.nationalstarch.com
Punjab Maize Products Ltd.
Uppli Road,
Sangroor,
Punjab - 148 001
Tel : 34209
Fax : 30615

Punjab Maize Products Ltd.
A-8, DLF Indl. Area - 1,
Faridabad - 121 003 (Hr.)
Tel : 2765 50
Fax : 2768 84
MANUFACTURE OF STARCH

Starch form maize is obtained by the wet milling process. The process involves cleaning of grains, steeping, milling, separation of husk, germ and gluten, and drying the product. The grains received at the mills and magnetic separators to completely eliminate the extraneous matter present. The cleaned grain is stored in concrete silos.

The grain is transported to steeping vat by elevators and conveyors through a weighing machine. Warm matter containing a small amount of sulphur dioxide is circulated through the vats to loosen the husk and soften the gluten. During the steeping, a part of the soluble salts and proteins of the traisin get dissolved and when the solid matter content of the water reaches percent at 6-10 ie it is replaced by fresh steep water. The washed water is concentrated by evaporation and is used as cattle feed.

After steeping the softened granins are passed over vibrating screens to remove any adhering foreign matter and then ground in attrition mills consisting of two plates with protruding teeth. The ground mass is passed in to wooden, V shaped, germs from the rest of the mass. The floating germs are skimmed over by sweep paddles, washed on screens dried and sent to the oil extraction plant. The mixture of starch gluten, husks add fibre recovered at the bottom and sent to vibrating screens to eliminate excess water and soluble substances. IT is then throughly milled in fine grinders to fine slurry know as starch milk. The grinders may be either Buhror stone mills or preferably vertical mill make of stainless steel. The starch milk is processed in entrifuges to remove husk and fibre which are washed free of adhering starch in the counter current system and washing fed back to the main starch stream.
The resulting slurry is passed through high speed continuous centrifuges where the lighter gluten is separated from the heavier starch. In the first stage, the heavy starch layer is tapped in such a way that least possible amount of starch goes in which the overflow of gluten, thus maintaining gluten purity. In the latter stages the process is reversed to ensure the purity of the starch. The gluten from the first stage is concentrated and pressed into cake. The glutenous starch from the latter stages is fed back to the main stream at the husk separation stage. The deglutenized starch milk is dewatered in a perforated bucket centrifugal machine to a moisture content of about 30-36 percent. It is flash-dried and packed or passed on to other division for the manufacture of starch derivatives.
PROCESS OF DESCRIPTION

Wet milling or the classical milling process is the only process for the manufacture of starch which is universally in commercial use. Starch manufactured by this process can be used by textiles, paper and food industries. Starch may be dry milled using screening and air-classification of particle size, but this process does not completely separate oil, starch, and hull and can only be used by food industry. Better separation is obtained by wet-milling.

To better understand the milling process, it is necessary to examine the structure of the corn kernel. The principal parts of the kernel are the tip cap, the main entry for water absorption by the kernel which consists of 0.8% of the kernel the pericarp or hull (5%) the germ or embryo (11%) and the endosperm (82%). The tip cap and pericarp comprise the fibre fraction in wet-milling or the bran fraction is dry milling. The germ is composed mainly of protein and lipids, whereas the endosperm consists of starch granules embedded in proteinaceous cell walls. An average composition of corn grain on a dry basis is 71.3% starch, 9.91% protein and 4.45% fat (29-30). The normal water content is 10 - 15%.

Cleaning & Soaking :-

The maize received at the site is weighed, cleaned by grain cleaners and stored in silos. When required it is cleaned by screening to remove colour, sand, and other foreign material, and then by aspiration to remove the lighter dust and chaff. This operation is known as dry cleaning of maize, which removes dust, broken grain and foreign matters. This reject from the grain is mixed with cattle feed. After cleaning the grains is once again weighed for steeping.
Steeping :-

In steeping process steep acid or sulphurous acid is produced by turning sulphur in a rotary burner. Generated sulphur di-oxide is cooled and absorbed in an absorption tower. The sulphurous acid formed is then pumped to steep tank.

The weighed grain is already been added in the steep tank when sulphurous acid is pumped. The grain is soaked for 48 hours in warm steep acid the temperature being maintained at 50-55°c. Steeping requires careful control of water flow temperature (50 - 55 °C), sulphur dioxide concentration, 0 % and PH at 3- 4. Corn introduced to teh steeps at a moisture content of 15% attains a moisture concentration of 45% at the end of 30 - 40 h. This water absorption rate is accelerated by the sulphur dioxide in the steep water ad results in a 55 - 65 % increase in kernel volume.

Sulphur dioxide was first added to corn steep water to prevent the growth of putrefactive micro organisms, but it is indispensible in maximising starch yield. It acts on the nitrogen-containing components of corn which consist of 10% albumin and non-protein nitrogen, 10% globulin, 38% zein and 42% glutelin. Sulphur di-oxide effects softening of the glutelin matrix, followed by dispersion. This action allows maximum starch release and recovery especially from the horny endosperm. Although sulphur dioxide inhibits the growth of micro organisms after several hours its concentration decreases and lactic acid bacteria start to grow.

Steep Liquor Concentration :-

During the steeping period, solubles are leached out of the maize grain and the steeped liquor is drawn off from the steeping tanks. It is concentrated to about 50% solids in three stages. Vapours coming out of the evaporators are condensed and the hot water from condenser is used for making steep acid again.
Crude Gem Oil Recovery :-

The grain after steeping is dewatered in a DSM dewatering screen. The softened corn kernels are degenerated between two studded steel plates, one rotating and one stationary, which tear the kernels apart and extricate the corn germs without crushing them. An attritcon null is used for this purpose and mill gap is so adjusted to maximize the amount of germ freed, but minimize rupture of germ, which would cause loss of oil and present problems in the purification step. The germs together with the slurry are sent to a hydroclone ie a cyclone separator, when the particles separate by density, the endosperm and fibre leaving in the hydroclone underflow and germ from the centre.

The germ fraction is then pumped onto screens, washed several times to remove residual starch, dewatered to 50-55% water content, and go for expelling and oil recovery.

Primary grinding is a difficult separation process since maize has to be partially broken to remove the outer fibrous layer (pericarp) remove the germ from endosperm by partially breaking it without damaging the germs.

Fibre Separation :-

The cyclone underflow is milled a second time for complete release of the starch granules. Some mills use a Bauer mill, which is a combination of attrition impact mill, some favour use of Entoleter mill, which is an impact mill only. Following the second milling, the kernel suspension contains starch, gluten and fibre. The fibre is removed by flowing the slurry over fixed concave screens. The fibre is retained on the screen while the starch and gluten pass through. Collected fibre is slurred and screened to remove residual starch and protein. The fibre is later consumed with 21% gluten for feed use.
Gluten Separation & Concentration :-

The starch-gluten suspension, commonly known as mill starch is concentrated by centrifugation to reduce soluble material. The low density of gluten, compared to starch, permits easy separation by centrifugation. Protein content is thus reduced to 1 - 2%. The starch suspension from the centrifugal separator is diluted and subjected to 8 - 14 stages of hydroclone washing. The concentrated starch underflow from this process is once again diluted and passed through a final battery of hydroclones to wash the starch and remove the last traces of protein.

Mixed Feed Processing :-

Washed and filtered fibres, from step 4 corn rejects from step 1, concentrated liquor from step 2 and gluten from the previous step are mixed in the required proportions to the desired protein content, suitable for making cattle feed. The mixed feed is dried in flash drier and nulled to the required size.

Starch Washing, Dewatering and Drying :-

The starch suspension may be processed dry and marketed as unmodified corn starch, modified by chemical or physical means, gelatinized and dried, or hydrolyzed to corn syrup. The wet milling process requires Ca 0.2 m3 water/100 kg. Corn or (20 gal/100 gal). This water must be removed before marketing. The corn is usually dewatered by centrifugation, followed by injection into a column of hot air (200 - 260°C) The starch granules dry very rapidly and are collected in cyclones. A large amount of energy is consumed in evaporating and drying starch making the wet milling process the second most energy intensive food industry.
The principle product of milling unmodified starch is a white powder with a pale yellow tint. Absolute whiteness requires bleaching. The final product, usually has a water content of 11% and may contain 1% protein, ash, lipids, and fibre.
PROCESS FLOW DIAGRAM FOR THE MFG. OF STARCH

+------------------------+
|SHELLED MAIZE |
+------------------------+

v

+------------------------+
|CLEANERS | STEEP WATER |
+------------------------+

v

|STEEP WATER + |-->|STEEP TANKS |-->|EVAPORTOR |
|SULPHER-DI-OXIDE | +------------------------+ +-------------------+ v +-------------------+
+-------------------+ |STEEP WATER | |GERM WASHING |<---|GERM SEPARATOR |
+-------------------+ |CONCENTRATE | +------------------+ +------------------+ v v
|DEGERMINATOR MILLS | |FIBER WASHING SCREEN | +------------------+ +------------------+
+-------------------+ |GLUTEN |<---|CENTRIFUGAL SEPARATOR | |FLASH DRYER |
+-------------------+ +------------------------+ +------------------+
|GLUTEN | |FLASH DRYER | +------------------+
+-------------------+ |WASHING HYDROCLONES | +------------------+
| | |GLUTEN FEED |
SUPPLIERS OF RAW MATERIALS

SULPHUR

Joseph, Sales Mgr
ADHESWARA CHEMICALS PVT LTD
26, Royapettah High Road
Chennai-600014,
Tamil Nadu
Fax: Phone:+91 44 281 30019
Emaicmail@adheswaragroup.com

Mg. Director
ALLIED ELECTROMECH COPRN
404, Vyapar Bghavan,
4th Floor, 49,
P.D, Mello Road
Mumbai-400009,
Maharashtra
Fax: Phone: 022-23774964
Emaiallied1@bol.net.in
COMPLETE PLANT SUPPLIERS

UNIVERSAL PROCESS ENGINEERS
A-1 / 10 , IDA NACHARAM,
HYDERABAD - 500076
Phone+ 91-040-27172573
Fax: + 91-040-27179701

Description
MANUFACTURERS & EXPORTERS OF "CHEMICAL EQUIPMENTS"
STARCH, STARCH MAKING MACHINERY, GLUCOSE, PLANTS & MACHINERY.
E-mail: info@a2zstarch.com
Website http://www.a2zstarch.com

S. S. Starch Consultancy
Providing starch plant turnkey project services.
Address: Flat No. 406, Banker Chamber, A. S. Rajunagar
Kukatpally, Hyderabad, Andhra Pradesh - 500 072, India
Phone: +(91)-(40)-55202241 Fax: +(91)-(40)-55202241
PLANT AND MACHINERY

Starch Plant

Upto 60% of the equipment can be fabricated indegenously whereas 40% will have to be imported.

Following is the list of major equipments with the information on whether the equipment should be imported or indegenous.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Equipment</th>
<th>Qty.</th>
<th>Indegenous</th>
<th>Imported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Steep tanks</td>
<td>6</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Recirculating Pumps</td>
<td>6</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Heaters</td>
<td>6</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Steep acid tank</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Dorr clone</td>
<td>4</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6.</td>
<td>DSM Screens</td>
<td>4</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>7.</td>
<td>Filtrate tank</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Steep liquor Evaporator</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Grind Mill</td>
<td>2</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>10.</td>
<td>Fine Mills</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>11.</td>
<td>Expellen Press</td>
<td>2</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>12.</td>
<td>Merco rotary</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>13.</td>
<td>Merco B-30</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>14.</td>
<td>Merco Strainer</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>15.</td>
<td>Gulten thickner</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>16.</td>
<td>Drum filter</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Dorrclone Starch</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Clarification system</td>
<td>1</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>S.No.</td>
<td>Equipment</td>
<td>Qty.</td>
<td>Indigenous</td>
<td>Imported</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>19.</td>
<td>Starch Milk tank</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Starch filter</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Emergency tank</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Sulphur Burner</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Absorption tower</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Dryers</td>
<td>3</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Separating cyclones</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Flash Dryer (Starch)</td>
<td>1</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this list of equipment, storage, vessels, pumps, heat exchangers, agitators, conveyons, strainers, packing systems, etc. will be required.

About 40% of the equipment has to be imported. Both indigenous and imported equipment can be purchased through Messers Dorr Oliver who has developed a lot of special equipment such as Dorrclones, DSM screens, merco centifuges etc.
PLANT ECONOMICS

Rated Plant capacity = 20.00 MT/day
 = 6000.00 MT/annum

Basis

No. of working days = 25 days/month
 = 300 days/annum

No. of shifts = 3 per day

One shift = 8 hours

Currency - Rs.
LAND & BUILDING

1. **Land area 2.5 acres.** = 2617.5 sq.m
 @ Rs.1000/- per sq.mt.
 Rs. **26,17,500.00**

2. **Development Charges for 2.5 acre**
 @ Rs.15000/- per acre.
 Rs. **37,500.00**

3. **Corn receiving godown 250 sq.mts.**
 @ Rs. 4000/- per sq.mt.
 Rs. **10,00,000.00**

4. **Corn silos 500 sq.mt.**
 @ Rs. 4000/- per sq.mt
 Rs. **20,00,000.00**

5. **Steep house 250 sq.mts.**
 @ Rs. 3600/- per sq.mt.
 Rs. **9,00,000.00**

6. **Wet milling section 1000 sq.mts.**
 @ Rs. 4000/- per sq.mt.
 Rs. **40,00,000.00**

7. **Office space 50 sq.mts.**
 @ Rs. 4500/- per sq.mt.
 Rs. **2,25,000.00**

8. **Security & Firstaid 50 sq.mts.**
 @ Rs. 3500/- per sq.mt.
 Rs. **1,75,000.00**

9. **Canteen 200 sq.mts.**
 @ Rs. 3000/- per sq.mt.
 Rs. **6,00,000.00**

10. **Laboratory & work shop 100 sq. mts.**
 @ Rs. 4500/- per sq.mt.
 Rs. **4,50,000.00**

11. **Loading and scaling area 500 sq.mts**
 @ Rs.1500/- per sq.mt.
 Rs. **7,50,000.00**

TOTAL
Rs. **1,27,55,000.00**
PLANT & MACHINERY

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit Price (Rs.)</th>
<th>Total (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Weighing machine</td>
<td>1 nos.</td>
<td>1</td>
<td>115,000/-</td>
<td>1,15,000.00</td>
</tr>
<tr>
<td>2.</td>
<td>Silos</td>
<td>20 nos.</td>
<td>20</td>
<td>9000/-</td>
<td>1,80,000.00</td>
</tr>
<tr>
<td>3.</td>
<td>Screening machine</td>
<td>2 nos.</td>
<td>2</td>
<td>60,000/- per piece</td>
<td>1,20,000.00</td>
</tr>
<tr>
<td>4.</td>
<td>Rotary burner</td>
<td>1 nos.</td>
<td>1</td>
<td>160,000/-</td>
<td>1,60,000.00</td>
</tr>
<tr>
<td>5.</td>
<td>Steep tanks</td>
<td>6 nos.</td>
<td>6</td>
<td>1,20,000/-</td>
<td>3,30,000.00</td>
</tr>
<tr>
<td>6.</td>
<td>Recirculating pumps</td>
<td>6 nos.</td>
<td>6</td>
<td>40,000/-</td>
<td>2,40,000.00</td>
</tr>
<tr>
<td>7.</td>
<td>Acid tank storage</td>
<td>1 nos.</td>
<td>1</td>
<td>95,000/-</td>
<td>95,000.00</td>
</tr>
<tr>
<td>8.</td>
<td>Evaporator</td>
<td>1 nos.</td>
<td>1</td>
<td>4,00,000/-</td>
<td>4,00,000.00</td>
</tr>
<tr>
<td>9.</td>
<td>Condensor</td>
<td>1 nos.</td>
<td>1</td>
<td>50,000/-</td>
<td>50,000.00</td>
</tr>
<tr>
<td>10.</td>
<td>Attrition mills</td>
<td>2 nos.</td>
<td>2</td>
<td>7,00,000/-</td>
<td>14,00,000.00</td>
</tr>
<tr>
<td>11.</td>
<td>Hydroclones Cylones</td>
<td>3 nos.</td>
<td>3</td>
<td>3,00,000/-</td>
<td>9,00,000.00</td>
</tr>
<tr>
<td>12.</td>
<td>Fine mill (pulveriser)</td>
<td>1 nos.</td>
<td>1</td>
<td>1,50,000/-</td>
<td>1,50,000.00</td>
</tr>
<tr>
<td>13.</td>
<td>Centrifuge</td>
<td>1 nos.</td>
<td>1</td>
<td>2,00,000/-</td>
<td>2,00,000.00</td>
</tr>
<tr>
<td>14.</td>
<td>Storage tanks</td>
<td>5 nos.</td>
<td>5</td>
<td>2,50,000/-</td>
<td>2,50,000.00</td>
</tr>
<tr>
<td>15.</td>
<td>Elevator</td>
<td>1 nos.</td>
<td>1</td>
<td>95,000.00</td>
<td>95,000.00</td>
</tr>
<tr>
<td>Item Description</td>
<td>Quantity</td>
<td>Cost (Rs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Tray dryer</td>
<td>2 nos.</td>
<td>2,50,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Flash dryer</td>
<td>1 nos.</td>
<td>75,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Miscellaneous.</td>
<td></td>
<td>3,00,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>45,90,000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OTHER FIXED ASSETS

1. Office equipment, furniture plus other equipment & accessories \[Rs. 4,50,000.00 \]
2. Water electricity connection. \[Rs. 50,000.00 \]
3. Site fabrication work. \[Rs. 1,50,000.00 \]
4. Erection & commision. \[Rs. 2,00,000.00 \]
5. Preliminary & pre-operative expenses. \[Rs. 1,60,000.00 \]
6. Miscellaneous. \[Rs. 1,00,000.00 \]
7. Office Cars \[Rs. 6,00,000.00 \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office equipment, furniture plus other equipment & accessories</td>
<td>Rs. 4,50,000.00</td>
</tr>
<tr>
<td>Water electricity connection.</td>
<td>Rs. 50,000.00</td>
</tr>
<tr>
<td>Site fabrication work.</td>
<td>Rs. 1,50,000.00</td>
</tr>
<tr>
<td>Erection & commision.</td>
<td>Rs. 2,00,000.00</td>
</tr>
<tr>
<td>Preliminary & pre-operative expenses.</td>
<td>Rs. 1,60,000.00</td>
</tr>
<tr>
<td>Miscellaneous.</td>
<td>Rs. 1,00,000.00</td>
</tr>
<tr>
<td>Office Cars</td>
<td>Rs. 6,00,000.00</td>
</tr>
</tbody>
</table>

TOTAL \[Rs. 17,10,000.00 \]
STARCH FROM MAIZE [EIRI/DFR/0411]
J.C. 7991

FIXED CAPITAL

1. LAND & BUILDING
 Rs. 1,27,55,000.00

2. PLANT & MACHINERY
 Rs. 45,90,000.00

3. OTHER FIXED ASSETS
 Rs. 17,10,000.00

TOTAL Rs. 1,90,55,000.00

STARCH FROM MAIZE [EIRI/DFR/0411]
J.C. 7991

WORKING CAPITAL REQUIREMENT/MONTH

RAW MATERIALS

1. Maize 875MT.
 @ Rs.10000/- per MT. Rs. 87,50,000.00

2. Sulphur 4.175 MT.
 @ Rs. 25,000/- per MT. Rs. 1,04,250.00

3. Fuel oil for 2.5 ton steam/hour
 for drying in 0.25 ton fuel/hour
 for sulphur burning.cont....
 cont......
 Total fuel oil = 150MT.
 @ Rs.12/- kg. Rs. 18,00,000.00

4. Lubricating oil 75kg.
 @ Rs. 60/- per kg. Rs. 4,500.00

TOTAL Rs. 1,06,58,750.00

SALARY & WAGES / MONTH

<table>
<thead>
<tr>
<th>Position</th>
<th>Quantity (Nos.)</th>
<th>Rate (Rs.)</th>
<th>Amount (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager</td>
<td>1</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Secretary</td>
<td>1</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Accountants</td>
<td>2</td>
<td>12,000</td>
<td>24,000</td>
</tr>
<tr>
<td>Process Engineer</td>
<td>1</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td>Production & maintenance superintendent</td>
<td>1</td>
<td>6,500</td>
<td>6,500</td>
</tr>
<tr>
<td>Sales & Marketing officer</td>
<td>1</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Skilled labour</td>
<td>5</td>
<td>22,500</td>
<td>112,500</td>
</tr>
<tr>
<td>Unskilled labour</td>
<td>5</td>
<td>20,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Peons & office attendants</td>
<td>2</td>
<td>7,000</td>
<td>14,000</td>
</tr>
<tr>
<td>Stenographer/typist</td>
<td>1</td>
<td>4,200</td>
<td>4,200</td>
</tr>
<tr>
<td>Driver</td>
<td>2</td>
<td>8,400</td>
<td>16,800</td>
</tr>
</tbody>
</table>

TOTAL | | 1,18,600 | |

Plus perks @ 33% p.a. | Rs. | 39,529.38 |

TOTAL | Rs. | 1,58,129.38 |
UTILITIES AND OVERHEADS

1. Power Consumption of 15000 Kwatt hrs @ Rs. 5.00 per Kwatt hr. Rs. 75,000.00
2. Water Consumption of 700 KLs @ Rs. 4.00 per KL Rs. 2,800.00
3. Sales promotion & advertising. Rs. 1,00,000.00
4. Transportation. Rs. 2,00,000.00
5. Packaging & containers costs. Rs. 1,50,000.00
6. Miscellaneous. Rs. 1,00,000.00

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Rs. 6,27,800.00</td>
</tr>
</tbody>
</table>

Total load is 28 Kwatts
TOTAL WORKING CAPITAL/MONTH

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Material</td>
<td>Rs. 1,06,58,750.00</td>
</tr>
<tr>
<td>Salary & Wages</td>
<td>Rs. 1,58,129.38</td>
</tr>
<tr>
<td>Utilities & Overheads</td>
<td>Rs. 6,27,800.00</td>
</tr>
<tr>
<td>Total</td>
<td>Rs. 1,14,44,679.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Capital for 3 Months</td>
<td>Rs. 3,43,34,038.17</td>
</tr>
<tr>
<td>Margin Money for W/C Loan</td>
<td>Rs. 85,83,509.54</td>
</tr>
</tbody>
</table>

COST OF PROJECT

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Fixed Capital</td>
<td>Rs. 1,90,55,000.00</td>
</tr>
<tr>
<td>Margin Money</td>
<td>Rs. 85,83,509.54</td>
</tr>
<tr>
<td>Total</td>
<td>Rs. 2,76,38,509.54</td>
</tr>
</tbody>
</table>
TOTAL CAPITAL INVESTMENT

TOTAL FIXED CAPITAL Rs. 1,90,55,000.00
TOTAL WORKING CAPITAL FOR 3 MONTHS Rs. 3,43,34,038.17

TOTAL Rs. 5,33,89,038.17

COST OF PRODUCTION/ANNUM

1. Working Capital for 1 year Rs.13,73,31,152.68
2. Interest @ 12.00% on T.C.I Rs. 64,06,684.58
3. Depreciation @ 10.00% on buildings Rs. 10,13,750.00
4. Depreciation @ 20.00% on Plant and Machinery Rs. 9,18,000.00
5. Depreciation @ 20.00% on office equipment & furnitures Rs. 90,000.00

TOTAL Rs.14,57,64,587.26
TURN OVER/ANNUUM

1. Sale of 6000 MT of starch.
 @ Rs.27500/- per MT. Rs.16,50,00,000.00

 TOTAL Rs.16,50,00,000.00

PROFIT = RECEIPTS - COST OF PRODUCTION

= 16,50,00,000.00 - 14,57,64,587.26
= 1,92,35,412.74

PROFIT SALES RATIO = Profit / Sales x 100

= 1,92,35,412.74
= ----------------------------- X 100
 16,50,00,000.00

= 11.66 %

RATE OF RETURN = Operating profit / T.C.I x 100

= 1,92,35,412.74
= ----------------------------- X 100
 5,33,89,038.17

= 36.03 %
BREAK EVEN POINT (B.E.P)

Fixed Costs of the plant are as under -

1. Interests Rs. 64,06,684.58
2. Depreciation Rs. 20,21,750.00
3. 40.00% of salaries Rs. 7,59,021.02
4. 40.00% of overheads Rs. 30,13,440.00

TOTAL Rs. 1,22,00,895.60

\[
\text{B.E.P.} = \frac{\text{FIXED COSTS}}{\text{FIXED COSTS + PROFIT}} \times 100
\]

\[
\frac{1,22,00,895.60}{1,22,00,895.60 + 1,92,35,412.74} \times 100
\]

= 38.81 %

LAND MAN RATIO = Total land / Manpower

2618 : 22 :: 119 : 1
RESOURCES FOR FINANCE

1. Term loans from Financial institutions
 (80.00 % of fixed capital)
 at @12.00% p.a rate of interest Rs. 1,52,44,000.00

2. Bank loans for 3 months
 (75.00 % of working capital)
 at @ 12.00% p.a rate of interest Rs. 2,57,50,528.63

3. Self raised capital from even
 funds & loans from close ones to
 meet the margin money needs at a
 @ 12.00% p.a rate of interest Rs. 1,23,94,509.54

TOTAL Rs. 5,33,89,038.17

We hope Detailed Feasibility Report in your possession at the time, must have conveyed you the elementary idea on process data, market and economics. We feel you must have now taken a decision to finalize your project plan for ultimate implementation in a successful manner. Before you go ahead, we suggest you to take our MARKET SURVEY CUM DETAILED TECHNO ECONOMIC FEASIBILITY REPORT.

"EIRI" offer you MARKET SURVEY CUM DETAILED TECHNO ECONOMIC FEASIBILITY REPORT on this project.

Brief contents of MARKET SURVEY CUM DETAILED TECHNO ECONOMIC FEASIBILITY REPORT are as under:

- Introduction
- Properties
- BIS (Bureau of Indian Standard) Specifications & Requirements
- Uses & Applications
- Present Indian Market Position
- Expected Future Demand
- Export & Import Statistics Data
- Names and Addresses of Existing Units (Present Manufactures)
- List of Plant & Machineries
- Miscellaneous Items and Accessories
- Instruments, Laboratory Equipments and Accessories
- Electrification, Electric Load and Water
- Maintenance, Suppliers/Manufacturers of Plant and Machineries
- Process of Manufacture with formulae if applicable
- Flow Sheet Diagram
- List of Raw Materials
- Availability of Raw Materials
- Requirement of Staff & Labour
- Personnel Management
- Skilled & Unskilled Labour
- Requirement of Land Area
- Built up Area
- Plant Layout.

along with financial details as under:

Summary of Capital Cost of Project
Land & Side Development Exp.
Buildings
Plant & Machineries
Misc. Fixed Assets
Technical Know how Fees & Exp.
Preliminary Expenses
Pre-operative Expenses
Provision for Contingencies

below mentioned financial statements (Annexure) will be for 5 to 10 Years
Annexure :: Cost of Project and Means of Finance
Annexure :: Output, Profitability and Cash Flow Chart
Annexure :: Assessment of Working Capital requirements
Annexure :: Sources of Finance
Annexure :: Balance Sheets
Annexure :: Break-Even Analysis and profitability analysis.
Annexure :: Quantitative Details-Output/Sales/Stocks
Annexure :: Sales Realisation
Annexure :: Raw Material Cost
Annexure :: Other Raw Material Cost
Annexure :: Packing Material Cost
Annexure :: Consumables, Store etc.,
Annexure :: Employees Expenses
Annexure :: Fuel Expenses
Annexure :: Power/Electricity Expenses
Annexure :: Repairs & Maintenance Exp.
Annexure :: Other Mfg. Expenses
Annexure :: Administration Expenses
Annexure :: Selling Expenses
Annexure :: Depreciation Charges - Profitability
Annexure :: Depreciation Charges
Annexure :: Interest and Repayment - Term Loans
Annexure :: Tax on Profit
Annexure :: Assumptions for Profitability workings
Annexure :: Assessment of Working Capital

Engineers India Research Institute (EIRI) is a renowned name in the industrial world for offering technical and financial consultancy services.

EIRI services are:

Detailed Feasibility Reports
New Project Identification
Project Feasibility and Market Study
Identification of Lucrative Industrial Project Opportunities
Preparation of Project Profiles / Pre-Investment and Detailed Feasibility Studies,
Market Surveys / Studies, Market Survey Cum Detailed Techno-Economic Feasibility Reports
Project Reports in CD Roms
Identification of Plant /Process/Machinery and Equipment, Industrial General Guidance for setting up new industrial projects.

Price Rs. 20,000/- (Rs. Twenty Thousand only) or US$ 400/- for MARKET SURVEY CUM DETAILED TECHNO ECONOMIC FEASIBILITY REPORT.

PLEASE SEND YOUR CONFIRMED ORDER AT:

ENGINEERS INDIA RESEARCH INSTITUTE
4449, Nai Sarak, Main Road, Delhi-110 006 (India)
Ph: 91-11-23916431, 23918117, 45120361, 64727385, 23947058
E-Mail: eiribooks@yahoo.com, eiriprojects@gmail.com
Website: www.eiriindia.org, www.eiribooksandprojectreports.com
Mob: 9811437895, 9811151047